Minimal Weierstrass equation
\(y^2=x^3-84040488x+296538415012\)
Mordell-Weil group structure
\(\Z/{3}\Z\)
Torsion generators
\( \left(5292, 98\right) \)
Integral points
\((5292,\pm 98)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 97020 \) | = | \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-120535071148800 \) | = | \(-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7^{8} \cdot 11^{2} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{1647408715474378752}{3025} \) | = | \(-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{-2} \cdot 7 \cdot 11^{-2} \cdot 41^{3} \cdot 83^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.26927441170297089433384327295\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 72 \) = \( 3\cdot2\cdot2\cdot3\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(3\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 97020.2.a.l
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 4499712 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 2.1541952936237671546707461836246971130 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \(IV^{*}\) | Additive | -1 | 2 | 8 | 0 |
\(3\) | \(2\) | \(III\) | Additive | 1 | 2 | 3 | 0 |
\(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(7\) | \(3\) | \(IV^{*}\) | Additive | 1 | 2 | 8 | 0 |
\(11\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B.1.1 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | add | add | nonsplit | add | nonsplit |
$\lambda$-invariant(s) | - | - | 0 | - | 0 |
$\mu$-invariant(s) | - | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class 97020a
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.588.1 | \(\Z/6\Z\) | Not in database |
$6$ | 6.0.1037232.1 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.0.768797006670000.1 | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$9$ | 9.3.988639123509326520000.3 | \(\Z/9\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/12\Z\) | Not in database |
$18$ | 18.0.454396577038684708060888856640963000000000000.2 | \(\Z/6\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.