Properties

Label 97020a
Number of curves $2$
Conductor $97020$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 97020a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
97020.l1 97020a1 [0, 0, 0, -84040488, 296538415012] [3] 4499712 \(\Gamma_0(N)\)-optimal
97020.l2 97020a2 [0, 0, 0, -83793528, 298367823348] [] 13499136  

Rank

sage: E.rank()
 

The elliptic curves in class 97020a have rank \(0\).

Complex multiplication

The elliptic curves in class 97020a do not have complex multiplication.

Modular form 97020.2.a.a

sage: E.q_eigenform(10)
 
\( q - q^{5} - q^{11} + 5q^{13} + 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.