Show commands:
SageMath
sage: E = EllipticCurve("bz1")
sage: E.isogeny_class()
Elliptic curves in class 9702.bz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9702.bz1 | 9702bw2 | \([1, -1, 1, -103424, -12776137]\) | \(1426487591593/2156\) | \(184911756876\) | \([2]\) | \(36864\) | \(1.4299\) | |
9702.bz2 | 9702bw1 | \([1, -1, 1, -6404, -202345]\) | \(-338608873/13552\) | \(-1162302471792\) | \([2]\) | \(18432\) | \(1.0834\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9702.bz have rank \(0\).
Complex multiplication
The elliptic curves in class 9702.bz do not have complex multiplication.Modular form 9702.2.a.bz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.