sage:E = EllipticCurve("be1")
E.isogeny_class()
         
     
    
    
        
        sage:E.rank()
         
     
    
 The elliptic curve 9702.be1 has
rank \(0\).
    |   | 
    |  Bad L-factors: | 
        
        
            | Prime | 
            L-Factor | 
         
                | \(2\) | \(1 - T\) |  
                | \(3\) | \(1\) |  
                | \(7\) | \(1\) |  
                | \(11\) | \(1 - T\) |  
                 
     | 
    |   | 
    |  Good L-factors: | 
        
        
            | Prime | 
            L-Factor | 
            Isogeny Class over \(\mathbb{F}_p\) | 
         
                
            | \(5\) | 
            \( 1 + 3 T + 5 T^{2}\) | 
            
                              1.5.d
                           | 
           
                
            | \(13\) | 
            \( 1 - 6 T + 13 T^{2}\) | 
            
                              1.13.ag
                           | 
           
                
            | \(17\) | 
            \( 1 - 5 T + 17 T^{2}\) | 
            
                              1.17.af
                           | 
           
                
            | \(19\) | 
            \( 1 - 6 T + 19 T^{2}\) | 
            
                              1.19.ag
                           | 
           
                
            | \(23\) | 
            \( 1 + 5 T + 23 T^{2}\) | 
            
                              1.23.f
                           | 
           
                
            | \(29\) | 
            \( 1 - 6 T + 29 T^{2}\) | 
            
                              1.29.ag
                           | 
           
                | $\cdots$ | $\cdots$ | $\cdots$ | 
          
     | 
    |   | 
    | See L-function page for more information | 
 The elliptic curves in class 9702.be do not have complex multiplication.
    
        
        sage:E.q_eigenform(10)
         
     
    
  
Elliptic curves in class 9702.be
    
        
        sage:E.isogeny_class().curves