Properties

Label 9702.bd
Number of curves $2$
Conductor $9702$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bd1")
 
E.isogeny_class()
 

Elliptic curves in class 9702.bd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9702.bd1 9702ce1 \([1, -1, 1, -104, 627]\) \(-3451273/2376\) \(-84873096\) \([]\) \(3456\) \(0.22171\) \(\Gamma_0(N)\)-optimal
9702.bd2 9702ce2 \([1, -1, 1, 841, -9201]\) \(1843623047/2044416\) \(-73028583936\) \([]\) \(10368\) \(0.77102\)  

Rank

sage: E.rank()
 

The elliptic curves in class 9702.bd have rank \(1\).

Complex multiplication

The elliptic curves in class 9702.bd do not have complex multiplication.

Modular form 9702.2.a.bd

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{5} + q^{8} - 3 q^{10} + q^{11} - 2 q^{13} + q^{16} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.