Learn more

Refine search


Results (1-50 of 63 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
9680.a1 9680.a \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.513365699$ $[0, 0, 0, -8107, -300806]$ \(y^2=x^3-8107x-300806\) 440.2.0.? $[(143, 1210)]$
9680.b1 9680.b \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -7213576, -7458075660]$ \(y^2=x^3+x^2-7213576x-7458075660\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ $[ ]$
9680.b2 9680.b \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -398856, -144518156]$ \(y^2=x^3+x^2-398856x-144518156\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ $[ ]$
9680.c1 9680.c \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -59616, 5581684]$ \(y^2=x^3+x^2-59616x+5581684\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ $[ ]$
9680.c2 9680.c \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -3296, 107380]$ \(y^2=x^3+x^2-3296x+107380\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ $[ ]$
9680.d1 9680.d \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -7300, 237048]$ \(y^2=x^3+x^2-7300x+237048\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.a.1, 220.12.0.? $[ ]$
9680.d2 9680.d \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -645, 130]$ \(y^2=x^3+x^2-645x+130\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.b.1, 220.12.0.? $[ ]$
9680.e1 9680.e \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.382503886$ $[0, -1, 0, 27064, 29493136]$ \(y^2=x^3-x^2+27064x+29493136\) 440.2.0.? $[(-40, 5324)]$
9680.f1 9680.f \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.637384322$ $[0, -1, 0, -436, -3364]$ \(y^2=x^3-x^2-436x-3364\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 330.8.0.?, $\ldots$ $[(269, 4390)]$
9680.f2 9680.f \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.879128107$ $[0, -1, 0, 4, -20]$ \(y^2=x^3-x^2+4x-20\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 330.8.0.?, $\ldots$ $[(5, 10)]$
9680.g1 9680.g \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.524616739$ $[0, -1, 0, -1976, 93040]$ \(y^2=x^3-x^2-1976x+93040\) 3.4.0.a.1, 120.8.0.?, 132.8.0.?, 440.2.0.?, 1320.16.0.? $[(26, 242)]$
9680.g2 9680.g \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.573850217$ $[0, -1, 0, 17384, -2199184]$ \(y^2=x^3-x^2+17384x-2199184\) 3.4.0.a.1, 120.8.0.?, 132.8.0.?, 440.2.0.?, 1320.16.0.? $[(554, 13310)]$
9680.h1 9680.h \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.520008364$ $[0, -1, 0, -52796, 4688620]$ \(y^2=x^3-x^2-52796x+4688620\) 3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 $[(81, 968)]$
9680.h2 9680.h \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $4.560025094$ $[0, -1, 0, 444, 24796]$ \(y^2=x^3-x^2+444x+24796\) 3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 $[(73, 664)]$
9680.i1 9680.i \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.952547531$ $[0, -1, 0, 224, -22240]$ \(y^2=x^3-x^2+224x-22240\) 440.2.0.? $[(26, 22)]$
9680.j1 9680.j \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.111271839$ $[0, -1, 0, -171376, 27624896]$ \(y^2=x^3-x^2-171376x+27624896\) 3.4.0.a.1, 120.8.0.?, 132.8.0.?, 440.2.0.?, 1320.16.0.? $[(488, 7744)]$
9680.j2 9680.j \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.333815519$ $[0, -1, 0, 573984, 142708480]$ \(y^2=x^3-x^2+573984x+142708480\) 3.4.0.a.1, 120.8.0.?, 132.8.0.?, 440.2.0.?, 1320.16.0.? $[(5520/7, 4956160/7)]$
9680.k1 9680.k \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1176160, 499304192]$ \(y^2=x^3-x^2-1176160x+499304192\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 330.8.0.?, $\ldots$ $[ ]$
9680.k2 9680.k \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 4680240, 2331186112]$ \(y^2=x^3-x^2+4680240x+2331186112\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 330.8.0.?, $\ldots$ $[ ]$
9680.l1 9680.l \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -9720, -371600]$ \(y^2=x^3-x^2-9720x-371600\) 3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 $[ ]$
9680.l2 9680.l \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 38680, -1765520]$ \(y^2=x^3-x^2+38680x-1765520\) 3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 $[ ]$
9680.m1 9680.m \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -177023, -28667078]$ \(y^2=x^3-177023x-28667078\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.u.1, 40.24.0.eg.1, 44.12.0.l.1, $\ldots$ $[ ]$
9680.m2 9680.m \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10648, -483153]$ \(y^2=x^3-10648x-483153\) 2.3.0.a.1, 4.12.0.e.1, 22.6.0.a.1, 40.24.0.ea.1, 44.24.0.e.1, $\ldots$ $[ ]$
9680.n1 9680.n \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4598, -115797]$ \(y^2=x^3-4598x-115797\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.c.1, 220.12.0.? $[ ]$
9680.n2 9680.n \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2057, -423258]$ \(y^2=x^3+2057x-423258\) 2.3.0.a.1, 20.6.0.c.1, 22.6.0.a.1, 220.12.0.? $[ ]$
9680.o1 9680.o \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2783, -50578]$ \(y^2=x^3-2783x-50578\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.c.1, 220.12.0.? $[ ]$
9680.o2 9680.o \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 242, -3993]$ \(y^2=x^3+242x-3993\) 2.3.0.a.1, 20.6.0.c.1, 22.6.0.a.1, 220.12.0.? $[ ]$
9680.p1 9680.p \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1463, 21538]$ \(y^2=x^3-1463x+21538\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.u.1, 40.24.0.eg.1, 44.12.0.l.1, $\ldots$ $[ ]$
9680.p2 9680.p \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -88, 363]$ \(y^2=x^3-88x+363\) 2.3.0.a.1, 4.12.0.e.1, 22.6.0.a.1, 40.24.0.ea.1, 44.24.0.e.1, $\ldots$ $[ ]$
9680.q1 9680.q \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.178039125$ $[0, 0, 0, -12947, -567006]$ \(y^2=x^3-12947x-567006\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 10.6.0.a.1, 16.24.0.i.1, $\ldots$ $[(209, 2420)]$
9680.q2 9680.q \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.356078251$ $[0, 0, 0, -847, -7986]$ \(y^2=x^3-847x-7986\) 2.6.0.a.1, 4.12.0.a.1, 8.24.0.g.1, 20.24.0.b.1, 40.96.3.bk.1, $\ldots$ $[(158, 1950)]$
9680.q3 9680.q \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.178039125$ $[0, 0, 0, -242, 1331]$ \(y^2=x^3-242x+1331\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 10.6.0.a.1, 16.24.0.i.1, $\ldots$ $[(-55/2, 363/2)]$
9680.q4 9680.q \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.178039125$ $[0, 0, 0, 1573, -45254]$ \(y^2=x^3+1573x-45254\) 2.3.0.a.1, 4.24.0.c.1, 40.48.1.dk.1, 44.48.0-4.c.1.1, 80.96.3.?, $\ldots$ $[(27, 130)]$
9680.r1 9680.r \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -114587, 14925834]$ \(y^2=x^3-114587x+14925834\) 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.13, 44.24.0-44.h.1.2, 440.48.0.? $[ ]$
9680.r2 9680.r \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -56507, -5049814]$ \(y^2=x^3-56507x-5049814\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ $[ ]$
9680.r3 9680.r \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -8107, 167706]$ \(y^2=x^3-8107x+167706\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.3, 44.24.0-44.a.1.1, 220.48.0.? $[ ]$
9680.r4 9680.r \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1573, 18634]$ \(y^2=x^3+1573x+18634\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.5, 88.24.0.?, 110.6.0.?, $\ldots$ $[ ]$
9680.s1 9680.s \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.510571337$ $[0, 0, 0, -913187, -17284366]$ \(y^2=x^3-913187x-17284366\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 10.6.0.a.1, 16.24.0-8.o.1.4, $\ldots$ $[(-407, 16940)]$
9680.s2 9680.s \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.021142674$ $[0, 0, 0, -610687, 183031134]$ \(y^2=x^3-610687x+183031134\) 2.6.0.a.1, 4.12.0.a.1, 8.24.0-4.a.1.3, 20.24.0.b.1, 40.96.0-40.g.1.9, $\ldots$ $[(718, 10710)]$
9680.s3 9680.s \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.510571337$ $[0, 0, 0, -610082, 183413131]$ \(y^2=x^3-610082x+183413131\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 10.6.0.a.1, 16.24.0-8.o.1.4, $\ldots$ $[(913/2, 59895/2)]$
9680.s4 9680.s \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.510571337$ $[0, 0, 0, -317867, 358898826]$ \(y^2=x^3-317867x+358898826\) 2.3.0.a.1, 4.24.0-4.d.1.2, 40.48.0-40.w.1.7, 44.48.0-44.d.1.1, 80.96.0.?, $\ldots$ $[(-253, 20570)]$
9680.t1 9680.t \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -40, -332]$ \(y^2=x^3+x^2-40x-332\) 20.2.0.a.1 $[ ]$
9680.u1 9680.u \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.460907026$ $[0, 1, 0, -377560, 96850708]$ \(y^2=x^3+x^2-377560x+96850708\) 3.6.0.b.1, 33.12.0.a.1, 120.12.0.?, 440.2.0.?, 1320.24.1.? $[(-444, 13310)]$
9680.v1 9680.v \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.781344511$ $[0, 1, 0, -3120, -73900]$ \(y^2=x^3+x^2-3120x-73900\) 3.6.0.b.1, 33.12.0.a.1, 120.12.0.?, 440.2.0.?, 1320.24.1.? $[(370, 7040)]$
9680.w1 9680.w \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -4880, 422420]$ \(y^2=x^3+x^2-4880x+422420\) 20.2.0.a.1 $[ ]$
9680.x1 9680.x \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -11499880, -15014090060]$ \(y^2=x^3+x^2-11499880x-15014090060\) 5.12.0.a.2, 40.24.0-5.a.2.6, 220.24.0.?, 440.48.1.? $[ ]$
9680.x2 9680.x \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 19320, -4165900]$ \(y^2=x^3+x^2+19320x-4165900\) 5.12.0.a.1, 40.24.0-5.a.1.6, 220.24.0.?, 440.48.1.? $[ ]$
9680.y1 9680.y \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $4.701148838$ $[0, -1, 0, -26176, 1595376]$ \(y^2=x^3-x^2-26176x+1595376\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.a.1, 220.12.0.? $[(486, 10170)]$
9680.y2 9680.y \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $9.402297676$ $[0, -1, 0, 444, 83360]$ \(y^2=x^3-x^2+444x+83360\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.b.1, 110.6.0.?, 220.12.0.? $[(9529/9, 964342/9)]$
9680.z1 9680.z \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.333242690$ $[0, -1, 0, -216, -1120]$ \(y^2=x^3-x^2-216x-1120\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.a.1, 220.12.0.? $[(38, 210)]$
Next   displayed columns for results