# Properties

 Label 966a Number of curves $2$ Conductor $966$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("966.b1")

sage: E.isogeny_class()

## Elliptic curves in class 966a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
966.b2 966a1 [1, 1, 0, 334, 5556] [2] 960 $$\Gamma_0(N)$$-optimal
966.b1 966a2 [1, 1, 0, -3346, 63700] [2] 1920

## Rank

sage: E.rank()

The elliptic curves in class 966a have rank $$1$$.

## Modular form966.2.a.b

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} + q^{4} - 2q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + 2q^{10} - q^{12} + 4q^{13} + q^{14} + 2q^{15} + q^{16} - q^{18} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.