Minimal Weierstrass equation
\(y^2=x^3+x^2+17899x-600201\)
Mordell-Weil group structure
$\Z\times \Z/{3}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(49, 630\right)\)
|
$\hat{h}(P)$ | ≈ | $0.31806963648412334511625555494$ |
Torsion generators
\( \left(85, 1242\right) \)
Integral points
\((49,\pm 630)\), \((85,\pm 1242)\), \((154,\pm 2415)\), \((274,\pm 4995)\), \((301,\pm 5670)\), \((637,\pm 16422)\), \((729,\pm 20010)\), \((2569,\pm 130410)\), \((155449,\pm 61289130)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 9660 \) | = | $2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 23$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-525713215507200 $ | = | $-1 \cdot 2^{8} \cdot 3^{9} \cdot 5^{2} \cdot 7^{3} \cdot 23^{3} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{2477112820760576}{2053567248075} \) | = | $2^{22} \cdot 3^{-9} \cdot 5^{-2} \cdot 7^{-3} \cdot 23^{-3} \cdot 839^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.5123802024419454973786965010\dots$ | ||
Stable Faltings height: | $1.0502820820686486244338750867\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.31806963648412334511625555494\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.28823619902609830158796933013\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 486 $ = $ 3\cdot3^{2}\cdot2\cdot3\cdot3 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $3$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 4.9506758844730117636903094600 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 38880 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $IV^{*}$ | Additive | -1 | 2 | 8 | 0 |
$3$ | $9$ | $I_{9}$ | Split multiplicative | -1 | 1 | 9 | 9 |
$5$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$7$ | $3$ | $I_{3}$ | Split multiplicative | -1 | 1 | 3 | 3 |
$23$ | $3$ | $I_{3}$ | Split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 3.8.0.1 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | nonsplit | split | ord | ord | ord | ord | split | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 4 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 9660.d
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.1932.1 | \(\Z/6\Z\) | Not in database |
$6$ | 6.0.1802857392.1 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.0.270000.1 | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$9$ | 9.3.116551616127480000.11 | \(\Z/9\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/12\Z\) | Not in database |
$18$ | 18.0.342804527144547363000000000000.1 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.