Show commands for:
SageMath
sage: E = EllipticCurve("i1")
sage: E.isogeny_class()
Elliptic curves in class 966.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
966.i1 | 966k2 | [1, 0, 0, -27, -249] | [] | 360 | |
966.i2 | 966k1 | [1, 0, 0, 3, 9] | [3] | 120 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 966.i have rank \(0\).
Complex multiplication
The elliptic curves in class 966.i do not have complex multiplication.Modular form 966.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.