# Properties

 Label 966.g2 Conductor $966$ Discriminant $19093020912$ j-invariant $$\frac{614716917569296417}{19093020912}$$ CM no Rank $1$ Torsion structure $$\Z/{8}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -17714, 900047])

gp: E = ellinit([1, 1, 1, -17714, 900047])

magma: E := EllipticCurve([1, 1, 1, -17714, 900047]);

## Simplified equation

 $$y^2+xy+y=x^3+x^2-17714x+900047$$ y^2+xy+y=x^3+x^2-17714x+900047 (homogenize, simplify) $$y^2z+xyz+yz^2=x^3+x^2z-17714xz^2+900047z^3$$ y^2z+xyz+yz^2=x^3+x^2z-17714xz^2+900047z^3 (dehomogenize, simplify) $$y^2=x^3-22957371x+42336961686$$ y^2=x^3-22957371x+42336961686 (homogenize, minimize)

## Mordell-Weil group structure

$$\Z \oplus \Z/{8}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(79, -1\right)$$ (79, -1) $\hat{h}(P)$ ≈ $2.4290466140306996094973985269$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(75, -17\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-135, 991\right)$$, $$\left(-135, -857\right)$$, $$\left(-9, 1033\right)$$, $$\left(-9, -1025\right)$$, $$\left(75, -17\right)$$, $$\left(75, -59\right)$$, $$\left(79, -1\right)$$, $$\left(79, -79\right)$$, $$\left(89, 151\right)$$, $$\left(89, -241\right)$$, $$\left(383, 6913\right)$$, $$\left(383, -7297\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$966$$ = $2 \cdot 3 \cdot 7 \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $19093020912$ = $2^{4} \cdot 3^{2} \cdot 7^{8} \cdot 23$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{614716917569296417}{19093020912}$$ = $2^{-4} \cdot 3^{-2} \cdot 7^{-8} \cdot 23^{-1} \cdot 850273^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.0694009627598650567163755213\dots$ Stable Faltings height: $1.0694009627598650567163755213\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $2.4290466140306996094973985269\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $1.1385943933317229190124898245\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $64$  = $2^{2}\cdot2\cdot2^{3}\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $8$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $2.7656988558767601384646959067$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} - 2 q^{5} - q^{6} + q^{7} + q^{8} + q^{9} - 2 q^{10} - 4 q^{11} - q^{12} - 2 q^{13} + q^{14} + 2 q^{15} + q^{16} - 6 q^{17} + q^{18} + 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2048 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$3$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$7$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$23$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.48.0.159

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit ord split ord ord ord ord nonsplit ord ord ord ord ord ord 3 5 1 2 1 1 1 1 1 1 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 966.g consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{8}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{23})$$ $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $4$ 4.0.649152.2 $$\Z/16\Z$$ Not in database $8$ 8.0.785836081741824.45 $$\Z/4\Z \oplus \Z/8\Z$$ Not in database $8$ 8.8.90991147389184.1 $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $8$ 8.0.3566715372896256.49 $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $8$ 8.2.1904396123174832.3 $$\Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/32\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/24\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.