Properties

Label 966.e
Number of curves $2$
Conductor $966$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("966.e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 966.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
966.e1 966e2 [1, 0, 1, -361, 2564] [2] 384  
966.e2 966e1 [1, 0, 1, -1, 116] [2] 192 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 966.e have rank \(1\).

Modular form 966.2.a.e

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9} - 2q^{11} + q^{12} - 6q^{13} + q^{14} + q^{16} + 2q^{17} - q^{18} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.