Minimal Weierstrass equation
\(y^2+xy=x^3+x^2-5131x-144323\)
Mordell-Weil group structure
trivial
Integral points
\(\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 966 \) | = | \(2 \cdot 3 \cdot 7 \cdot 23\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-85501108224 \) | = | \(-1 \cdot 2^{13} \cdot 3^{3} \cdot 7^{5} \cdot 23 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{14943832855786297}{85501108224} \) | = | \(-1 \cdot 2^{-13} \cdot 3^{-3} \cdot 7^{-5} \cdot 17^{3} \cdot 23^{-1} \cdot 14489^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | \(0.93940292624117495481286801118\dots\) | ||
Stable Faltings height: | \(0.93940292624117495481286801118\dots\) |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.28194180971556692829762487041\dots\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 5 \) = \( 1\cdot1\cdot5\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants

For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 1560 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 1.4097090485778346414881243520474933950 \)
Local data
This elliptic curve is semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(I_{13}\) | Non-split multiplicative | 1 | 1 | 13 | 13 |
\(3\) | \(1\) | \(I_{3}\) | Non-split multiplicative | 1 | 1 | 3 | 3 |
\(7\) | \(5\) | \(I_{5}\) | Split multiplicative | -1 | 1 | 5 | 5 |
\(23\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | ordinary | split | ordinary | ordinary | ss | ss | nonsplit | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | 1 | 0 | 6 | 1 | 0 | 0 | 0,0 | 0,0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has no rational isogenies. Its isogeny class 966.d consists of this curve only.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.3864.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.57691436544.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$8$ | 8.2.23511063249072.7 | \(\Z/3\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.