Properties

Label 966.c
Number of curves $2$
Conductor $966$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 966.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
966.c1 966c2 \([1, 1, 0, -250264, 48082240]\) \(1733490909744055732873/99355964553216\) \(99355964553216\) \([2]\) \(8448\) \(1.7495\)  
966.c2 966c1 \([1, 1, 0, -14744, 836928]\) \(-354499561600764553/101902222098432\) \(-101902222098432\) \([2]\) \(4224\) \(1.4029\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 966.c have rank \(1\).

Complex multiplication

The elliptic curves in class 966.c do not have complex multiplication.

Modular form 966.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 2q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - 2q^{10} - 4q^{11} - q^{12} - 4q^{13} - q^{14} - 2q^{15} + q^{16} - 4q^{17} - q^{18} - 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.