Properties

Label 96330p
Number of curves $1$
Conductor $96330$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 96330p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
96330.s1 96330p1 \([1, 1, 0, 191643, 62665101]\) \(954228173639/2626560000\) \(-2142565682549760000\) \([]\) \(1557504\) \(2.2009\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 96330p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 96330p do not have complex multiplication.

Modular form 96330.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} + 2 q^{11} - q^{12} - q^{15} + q^{16} - 2 q^{17} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display