Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 960o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
960.p8 | 960o1 | \([0, 1, 0, 95, -1057]\) | \(357911/2160\) | \(-566231040\) | \([2]\) | \(384\) | \(0.36143\) | \(\Gamma_0(N)\)-optimal |
960.p6 | 960o2 | \([0, 1, 0, -1185, -14625]\) | \(702595369/72900\) | \(19110297600\) | \([2, 2]\) | \(768\) | \(0.70801\) | |
960.p7 | 960o3 | \([0, 1, 0, -865, 31775]\) | \(-273359449/1536000\) | \(-402653184000\) | \([2]\) | \(1152\) | \(0.91074\) | |
960.p4 | 960o4 | \([0, 1, 0, -18465, -971937]\) | \(2656166199049/33750\) | \(8847360000\) | \([2]\) | \(1536\) | \(1.0546\) | |
960.p5 | 960o5 | \([0, 1, 0, -4385, 94815]\) | \(35578826569/5314410\) | \(1393140695040\) | \([4]\) | \(1536\) | \(1.0546\) | |
960.p3 | 960o6 | \([0, 1, 0, -21345, 1190943]\) | \(4102915888729/9000000\) | \(2359296000000\) | \([2, 2]\) | \(2304\) | \(1.2573\) | |
960.p2 | 960o7 | \([0, 1, 0, -29025, 249375]\) | \(10316097499609/5859375000\) | \(1536000000000000\) | \([2]\) | \(4608\) | \(1.6039\) | |
960.p1 | 960o8 | \([0, 1, 0, -341345, 76646943]\) | \(16778985534208729/81000\) | \(21233664000\) | \([4]\) | \(4608\) | \(1.6039\) |
Rank
sage: E.rank()
The elliptic curves in class 960o have rank \(0\).
Complex multiplication
The elliptic curves in class 960o do not have complex multiplication.Modular form 960.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.