Show commands for:
SageMath

sage: E = EllipticCurve("bw1")

sage: E.isogeny_class()

## Elliptic curves in class 9600.bw

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

9600.bw1 | 9600bw1 | [0, 1, 0, -83, 213] | [2] | 2304 | \(\Gamma_0(N)\)-optimal |

9600.bw2 | 9600bw2 | [0, 1, 0, 167, 1463] | [2] | 4608 |

## Rank

sage: E.rank()

The elliptic curves in class 9600.bw have rank \(1\).

## Complex multiplication

The elliptic curves in class 9600.bw do not have complex multiplication.## Modular form 9600.2.a.bw

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.