# Properties

 Label 960.o Number of curves $4$ Conductor $960$ CM no Rank $0$ Graph # Learn more

Show commands: SageMath
sage: E = EllipticCurve("o1")

sage: E.isogeny_class()

## Elliptic curves in class 960.o

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
960.o1 960n3 $$[0, 1, 0, -225, 1215]$$ $$38614472/405$$ $$13271040$$ $$$$ $$256$$ $$0.18331$$
960.o2 960n2 $$[0, 1, 0, -25, -25]$$ $$438976/225$$ $$921600$$ $$[2, 2]$$ $$128$$ $$-0.16327$$
960.o3 960n1 $$[0, 1, 0, -20, -42]$$ $$14526784/15$$ $$960$$ $$$$ $$64$$ $$-0.50984$$ $$\Gamma_0(N)$$-optimal
960.o4 960n4 $$[0, 1, 0, 95, -97]$$ $$2863288/1875$$ $$-61440000$$ $$$$ $$256$$ $$0.18331$$

## Rank

sage: E.rank()

The elliptic curves in class 960.o have rank $$0$$.

## Complex multiplication

The elliptic curves in class 960.o do not have complex multiplication.

## Modular form960.2.a.o

sage: E.q_eigenform(10)

$$q + q^{3} + q^{5} + q^{9} + 4q^{11} - 2q^{13} + q^{15} - 2q^{17} + 8q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 