Properties

Label 960.a
Number of curves $8$
Conductor $960$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 960.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
960.a1 960i7 \([0, -1, 0, -138241, 19829665]\) \(1114544804970241/405\) \(106168320\) \([2]\) \(2048\) \(1.3306\)  
960.a2 960i5 \([0, -1, 0, -8641, 311905]\) \(272223782641/164025\) \(42998169600\) \([2, 2]\) \(1024\) \(0.98402\)  
960.a3 960i8 \([0, -1, 0, -7041, 429345]\) \(-147281603041/215233605\) \(-56422198149120\) \([2]\) \(2048\) \(1.3306\)  
960.a4 960i3 \([0, -1, 0, -5121, -139359]\) \(56667352321/15\) \(3932160\) \([2]\) \(512\) \(0.63744\)  
960.a5 960i4 \([0, -1, 0, -641, 3105]\) \(111284641/50625\) \(13271040000\) \([2, 2]\) \(512\) \(0.63744\)  
960.a6 960i2 \([0, -1, 0, -321, -2079]\) \(13997521/225\) \(58982400\) \([2, 2]\) \(256\) \(0.29087\)  
960.a7 960i1 \([0, -1, 0, -1, -95]\) \(-1/15\) \(-3932160\) \([2]\) \(128\) \(-0.055704\) \(\Gamma_0(N)\)-optimal
960.a8 960i6 \([0, -1, 0, 2239, 20961]\) \(4733169839/3515625\) \(-921600000000\) \([2]\) \(1024\) \(0.98402\)  

Rank

sage: E.rank()
 

The elliptic curves in class 960.a have rank \(0\).

Complex multiplication

The elliptic curves in class 960.a do not have complex multiplication.

Modular form 960.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - 4 q^{11} + 2 q^{13} + q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.