Show commands for:
SageMath
sage: E = EllipticCurve("960.a1")
sage: E.isogeny_class()
Elliptic curves in class 960.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
960.a1 | 960i7 | [0, -1, 0, -138241, 19829665] | [2] | 2048 | |
960.a2 | 960i5 | [0, -1, 0, -8641, 311905] | [2, 2] | 1024 | |
960.a3 | 960i8 | [0, -1, 0, -7041, 429345] | [2] | 2048 | |
960.a4 | 960i3 | [0, -1, 0, -5121, -139359] | [2] | 512 | |
960.a5 | 960i4 | [0, -1, 0, -641, 3105] | [2, 2] | 512 | |
960.a6 | 960i2 | [0, -1, 0, -321, -2079] | [2, 2] | 256 | |
960.a7 | 960i1 | [0, -1, 0, -1, -95] | [2] | 128 | \(\Gamma_0(N)\)-optimal |
960.a8 | 960i6 | [0, -1, 0, 2239, 20961] | [2] | 1024 |
Rank
sage: E.rank()
The elliptic curves in class 960.a have rank \(0\).
Modular form 960.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.