Properties

Label 96.b
Number of curves 4
Conductor 96
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("96.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 96.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
96.b1 96a3 [0, 1, 0, -32, 60] [2] 8  
96.b2 96a2 [0, 1, 0, -17, -33] [2] 8  
96.b3 96a1 [0, 1, 0, -2, 0] [2, 2] 4 \(\Gamma_0(N)\)-optimal
96.b4 96a4 [0, 1, 0, 8, 8] [4] 8  

Rank

sage: E.rank()
 

The elliptic curves in class 96.b have rank \(0\).

Modular form 96.2.a.b

sage: E.q_eigenform(10)
 
\( q + q^{3} + 2q^{5} - 4q^{7} + q^{9} + 4q^{11} - 2q^{13} + 2q^{15} - 6q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.