Properties

Label 9555.t
Number of curves $1$
Conductor $9555$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9555.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9555.t do not have complex multiplication.

Modular form 9555.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} - q^{3} + 2 q^{4} - q^{5} - 2 q^{6} + q^{9} - 2 q^{10} - 5 q^{11} - 2 q^{12} - q^{13} + q^{15} - 4 q^{16} - 5 q^{17} + 2 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9555.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9555.t1 9555f1 \([0, -1, 1, -16, 237]\) \(-4096/195\) \(-22941555\) \([]\) \(3960\) \(0.092371\) \(\Gamma_0(N)\)-optimal