Properties

Label 9537.m
Number of curves 4
Conductor 9537
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("9537.m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 9537.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9537.m1 9537j3 [1, 0, 1, -42345, 3347029] [2] 30720  
9537.m2 9537j2 [1, 0, 1, -3330, 22951] [2, 2] 15360  
9537.m3 9537j1 [1, 0, 1, -1885, -31381] [2] 7680 \(\Gamma_0(N)\)-optimal
9537.m4 9537j4 [1, 0, 1, 12565, 181901] [2] 30720  

Rank

sage: E.rank()
 

The elliptic curves in class 9537.m have rank \(0\).

Modular form 9537.2.a.m

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{3} - q^{4} + 2q^{5} + q^{6} - 4q^{7} - 3q^{8} + q^{9} + 2q^{10} - q^{11} - q^{12} - 2q^{13} - 4q^{14} + 2q^{15} - q^{16} + q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.