Properties

 Label 950.c1 Conductor $950$ Discriminant $-15200000000$ j-invariant $$-\frac{11993263569}{972800}$$ CM no Rank $0$ Torsion structure trivial

Related objects

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 0, -1192, 17216])

gp: E = ellinit([1, -1, 0, -1192, 17216])

magma: E := EllipticCurve([1, -1, 0, -1192, 17216]);

$$y^2+xy=x^3-x^2-1192x+17216$$

trivial

Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$950$$ = $2 \cdot 5^{2} \cdot 19$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-15200000000$ = $-1 \cdot 2^{11} \cdot 5^{8} \cdot 19$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{11993263569}{972800}$$ = $-1 \cdot 2^{-11} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{3} \cdot 19^{-1} \cdot 109^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.69994180674041359524025951763\dots$ Stable Faltings height: $-0.10477714947663659206012014898\dots$

BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $1.2198252026250877293842094170\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $1\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.4396504052501754587684188340437280410$

Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + 3q^{3} + q^{4} - 3q^{6} + 5q^{7} - q^{8} + 6q^{9} - 4q^{11} + 3q^{12} + q^{13} - 5q^{14} + q^{16} + 3q^{17} - 6q^{18} + q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2112 $\Gamma_0(N)$-optimal: yes Manin constant: 1

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{11}$ Non-split multiplicative 1 1 11 11
$5$ $2$ $I_2^{*}$ Additive 1 2 8 2
$19$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$.

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit ss add ordinary ordinary ordinary ordinary split ordinary ordinary ordinary ordinary ordinary ordinary ss 3 0,0 - 0 0 2 0 1 0 0 0 0 0 0 0,0 0 0,0 - 0 0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has no rational isogenies. Its isogeny class 950.c consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.152.1 $$\Z/2\Z$$ Not in database $6$ 6.0.3511808.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.71253006750000.6 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.