# Properties

 Label 950.b1 Conductor $950$ Discriminant $-77378093750$ j-invariant $$-\frac{37966934881}{4952198}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -1751, -31352])

gp: E = ellinit([1, 0, 1, -1751, -31352])

magma: E := EllipticCurve([1, 0, 1, -1751, -31352]);

$$y^2+xy+y=x^3-1751x-31352$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(52, 111\right)$$ $\hat{h}(P)$ ≈ $2.7317220530391827121820981984$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(52, 111\right)$$, $$\left(52, -164\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$950$$ = $2 \cdot 5^{2} \cdot 19$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-77378093750$ = $-1 \cdot 2 \cdot 5^{6} \cdot 19^{5}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{37966934881}{4952198}$$ = $-1 \cdot 2^{-1} \cdot 19^{-5} \cdot 3361^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.82250354967327991821075576404\dots$ Stable Faltings height: $0.017784593456229730910376097427\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $2.7317220530391827121820981984\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.36637778515621209321484007411\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $1\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $2.0016845509097526005719215307879085674$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{6} - 3q^{7} - q^{8} - 2q^{9} + 2q^{11} + q^{12} + q^{13} + 3q^{14} + q^{16} - 3q^{17} + 2q^{18} - q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 800 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$5$ $2$ $I_0^{*}$ Additive 1 2 6 0
$19$ $1$ $I_{5}$ Non-split multiplicative 1 1 5 5

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$5$ 5B.1.3 5.24.0.4

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit ordinary add ordinary ordinary ordinary ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary 3 1 - 1 1 1 1 1 1 1 1 1 1 1 1 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 5.
Its isogeny class 950.b consists of 2 curves linked by isogenies of degree 5.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.152.1 $$\Z/2\Z$$ Not in database $4$ $$\Q(\zeta_{5})$$ $$\Z/5\Z$$ Not in database $6$ 6.0.3511808.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.2850120270000.4 $$\Z/3\Z$$ Not in database $10$ 10.2.12500000000.1 $$\Z/5\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/10\Z$$ Not in database $20$ 20.0.781250000000000000000.1 $$\Z/5\Z \times \Z/5\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.