Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
950.a1 |
950b2 |
950.a |
950b |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$1.275858$ |
$-2376117230685121/342950$ |
$0.98759$ |
$6.57203$ |
$[1, 1, 0, -69500, -7081250]$ |
\(y^2+xy=x^3+x^2-69500x-7081250\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 152.2.0.?, 456.8.0.?, 2280.16.0.? |
$[]$ |
950.a2 |
950b1 |
950.a |
950b |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{3} \cdot 5^{12} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.726551$ |
$-2992209121/2375000$ |
$0.90876$ |
$4.71664$ |
$[1, 1, 0, -750, -12500]$ |
\(y^2+xy=x^3+x^2-750x-12500\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 152.2.0.?, 456.8.0.?, 2280.16.0.? |
$[]$ |
950.b1 |
950a2 |
950.b |
950a |
$2$ |
$5$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2 \cdot 5^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$760$ |
$48$ |
$1$ |
$2.731722053$ |
$1$ |
|
$2$ |
$800$ |
$0.822503$ |
$-37966934881/4952198$ |
$0.97714$ |
$4.99089$ |
$[1, 0, 1, -1751, -31352]$ |
\(y^2+xy+y=x^3-1751x-31352\) |
5.24.0-5.a.2.1, 152.2.0.?, 760.48.1.? |
$[(52, 111)]$ |
950.b2 |
950a1 |
950.b |
950a |
$2$ |
$5$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{5} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$760$ |
$48$ |
$1$ |
$0.546344410$ |
$1$ |
|
$4$ |
$160$ |
$0.017785$ |
$-1/608$ |
$1.37833$ |
$3.43056$ |
$[1, 0, 1, -1, 148]$ |
\(y^2+xy+y=x^3-x+148\) |
5.24.0-5.a.1.1, 152.2.0.?, 760.48.1.? |
$[(2, 11)]$ |
950.c1 |
950c1 |
950.c |
950c |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{11} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2112$ |
$0.699942$ |
$-11993263569/972800$ |
$0.93850$ |
$4.81231$ |
$[1, -1, 0, -1192, 17216]$ |
\(y^2+xy=x^3-x^2-1192x+17216\) |
152.2.0.? |
$[]$ |
950.d1 |
950e3 |
950.d |
950e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$0.188760387$ |
$1$ |
|
$8$ |
$2592$ |
$1.289888$ |
$-69173457625/2550136832$ |
$1.05462$ |
$5.65690$ |
$[1, 1, 1, -2138, -306969]$ |
\(y^2+xy+y=x^3+x^2-2138x-306969\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
$[(105, 747)]$ |
950.d2 |
950e1 |
950.d |
950e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{3} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$0.188760387$ |
$1$ |
|
$6$ |
$288$ |
$0.191276$ |
$-413493625/152$ |
$0.93281$ |
$4.30213$ |
$[1, 1, 1, -388, 2781]$ |
\(y^2+xy+y=x^3+x^2-388x+2781\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
$[(15, 17)]$ |
950.d3 |
950e2 |
950.d |
950e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{9} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$0.062920129$ |
$1$ |
|
$12$ |
$864$ |
$0.740582$ |
$94196375/3511808$ |
$1.01875$ |
$4.69154$ |
$[1, 1, 1, 237, 11281]$ |
\(y^2+xy+y=x^3+x^2+237x+11281\) |
3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 45.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[(95, 902)]$ |
950.e1 |
950d1 |
950.e |
950d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$0.059755$ |
$357911/950$ |
$0.81125$ |
$3.45978$ |
$[1, 0, 0, 37, 167]$ |
\(y^2+xy=x^3+37x+167\) |
152.2.0.? |
$[]$ |