Show commands for:
SageMath
sage: E = EllipticCurve("d1")
sage: E.isogeny_class()
Elliptic curves in class 9464d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
9464.c4 | 9464d1 | [0, 0, 0, 169, 4394] | [2] | 4608 | \(\Gamma_0(N)\)-optimal |
9464.c3 | 9464d2 | [0, 0, 0, -3211, 65910] | [2, 2] | 9216 | |
9464.c2 | 9464d3 | [0, 0, 0, -9971, -303186] | [2] | 18432 | |
9464.c1 | 9464d4 | [0, 0, 0, -50531, 4372030] | [2] | 18432 |
Rank
sage: E.rank()
The elliptic curves in class 9464d have rank \(0\).
Complex multiplication
The elliptic curves in class 9464d do not have complex multiplication.Modular form 9464.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.