Show commands for:
SageMath
sage: E = EllipticCurve("r1")
sage: E.isogeny_class()
Elliptic curves in class 94192.r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
94192.r1 | 94192i4 | [0, 0, 0, -251459, -48534110] | [2] | 387072 | |
94192.r2 | 94192i3 | [0, 0, 0, -49619, 3365682] | [2] | 387072 | |
94192.r3 | 94192i2 | [0, 0, 0, -15979, -731670] | [2, 2] | 193536 | |
94192.r4 | 94192i1 | [0, 0, 0, 841, -48778] | [2] | 96768 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 94192.r have rank \(0\).
Complex multiplication
The elliptic curves in class 94192.r do not have complex multiplication.Modular form 94192.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.