Show commands for:
SageMath
sage: E = EllipticCurve("c1")
sage: E.isogeny_class()
Elliptic curves in class 9408c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
9408.bg2 | 9408c1 | [0, -1, 0, -457, 4243] | [] | 3360 | \(\Gamma_0(N)\)-optimal |
9408.bg1 | 9408c2 | [0, -1, 0, -178817, -29068437] | [] | 43680 |
Rank
sage: E.rank()
The elliptic curves in class 9408c have rank \(1\).
Complex multiplication
The elliptic curves in class 9408c do not have complex multiplication.Modular form 9408.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.