# Properties

 Label 9408.k Number of curves $2$ Conductor $9408$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("9408.k1")

sage: E.isogeny_class()

## Elliptic curves in class 9408.k

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9408.k1 9408cc2 [0, -1, 0, -3649, -83705] [] 6240
9408.k2 9408cc1 [0, -1, 0, -9, 15] [] 480 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 9408.k have rank $$1$$.

## Modular form9408.2.a.k

sage: E.q_eigenform(10)

$$q - q^{3} - 2q^{5} + q^{9} - 2q^{11} + q^{13} + 2q^{15} - q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 