Properties

Label 9408.de
Number of curves $2$
Conductor $9408$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("9408.de1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 9408.de

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9408.de1 9408de2 [0, 1, 0, -8801, -312033] [2] 24576  
9408.de2 9408de1 [0, 1, 0, 159, -16353] [2] 12288 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9408.de have rank \(0\).

Modular form 9408.2.a.de

sage: E.q_eigenform(10)
 
\( q + q^{3} + 4q^{5} + q^{9} - 4q^{11} + 4q^{13} + 4q^{15} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.