Properties

Label 9408.cq
Number of curves $1$
Conductor $9408$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9408.cq1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9408.cq do not have complex multiplication.

Modular form 9408.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} + 3 q^{11} - 4 q^{13} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9408.cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9408.cq1 9408ck1 \([0, 1, 0, 7775, 598751]\) \(68782/243\) \(-183611771191296\) \([]\) \(26880\) \(1.4199\) \(\Gamma_0(N)\)-optimal