# Properties

 Label 9408.bq Number of curves 2 Conductor 9408 CM no Rank 1 Graph

# Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("9408.bq1")

sage: E.isogeny_class()

## Elliptic curves in class 9408.bq

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9408.bq1 9408bl1 [0, 1, 0, -18440, -765066] [2] 46080 $$\Gamma_0(N)$$-optimal
9408.bq2 9408bl2 [0, 1, 0, 41095, -4634841] [2] 92160

## Rank

sage: E.rank()

The elliptic curves in class 9408.bq have rank $$1$$.

## Modular form9408.2.a.bq

sage: E.q_eigenform(10)

$$q + q^{3} - 4q^{5} + q^{9} + 2q^{11} - 2q^{13} - 4q^{15} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.