Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 9405.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9405.j1 | 9405m2 | \([1, -1, 0, -279, -1620]\) | \(3301293169/218405\) | \(159217245\) | \([2]\) | \(3072\) | \(0.32326\) | |
9405.j2 | 9405m1 | \([1, -1, 0, -54, 135]\) | \(24137569/5225\) | \(3809025\) | \([2]\) | \(1536\) | \(-0.023311\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9405.j have rank \(0\).
Complex multiplication
The elliptic curves in class 9405.j do not have complex multiplication.Modular form 9405.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.