Properties

Label 9360o2
Conductor $9360$
Discriminant $28385510400$
j-invariant \( \frac{15214885924}{38025} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -4683, 123082])
 
gp: E = ellinit([0, 0, 0, -4683, 123082])
 
magma: E := EllipticCurve([0, 0, 0, -4683, 123082]);
 

\(y^2=x^3-4683x+123082\)  Toggle raw display

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \(\left(11, 270\right)\)  Toggle raw display
\(\hat{h}(P)\) ≈  $0.75984415796232365976536932097$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(38, 0\right) \), \( \left(41, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-79, 0\right) \), \((11,\pm 270)\), \((29,\pm 108)\), \( \left(38, 0\right) \), \( \left(41, 0\right) \), \((42,\pm 22)\), \((51,\pm 130)\), \((77,\pm 468)\), \((401,\pm 7920)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 9360 \)  =  \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(28385510400 \)  =  \(2^{10} \cdot 3^{8} \cdot 5^{2} \cdot 13^{2} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{15214885924}{38025} \)  =  \(2^{2} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{3} \cdot 13^{-2} \cdot 223^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(0.88311140990864302044027741753\dots\)
Stable Faltings height: \(-0.24381738489203291643837196881\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(0.75984415796232365976536932097\dots\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(1.1848555989515900716581210320\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 64 \)  = \( 2^{2}\cdot2^{2}\cdot2\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(4\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form   9360.2.a.b

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{5} - 4q^{7} + 4q^{11} + q^{13} - 6q^{17} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 12288
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 3.6012224195692624723408696585365714652 \)

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \(I_2^{*}\) Additive 1 4 10 0
\(3\) \(4\) \(I_2^{*}\) Additive -1 2 8 2
\(5\) \(2\) \(I_{2}\) Non-split multiplicative 1 1 2 2
\(13\) \(2\) \(I_{2}\) Split multiplicative -1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $$ and has index 6.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add nonsplit ordinary ordinary split ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - - 1 1 1 2 1 1,1 1 1 1 1 1 1 1
$\mu$-invariant(s) - - 0 0 0 0 0 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 9360o consists of 2 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$4$ \(\Q(\sqrt{-3}, \sqrt{13})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-13}, \sqrt{-30})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{3}, \sqrt{10})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ 16.0.8979181539709000089600000000.10 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.