# Properties

 Label 9360bw Number of curves $2$ Conductor $9360$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("bw1")

sage: E.isogeny_class()

## Elliptic curves in class 9360bw

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9360.bh2 9360bw1 $$[0, 0, 0, 573, -14654]$$ $$6967871/35100$$ $$-104808038400$$ $$$$ $$9216$$ $$0.79684$$ $$\Gamma_0(N)$$-optimal
9360.bh1 9360bw2 $$[0, 0, 0, -6627, -186014]$$ $$10779215329/1232010$$ $$3678762147840$$ $$$$ $$18432$$ $$1.1434$$

## Rank

sage: E.rank()

The elliptic curves in class 9360bw have rank $$0$$.

## Complex multiplication

The elliptic curves in class 9360bw do not have complex multiplication.

## Modular form9360.2.a.bw

sage: E.q_eigenform(10)

$$q + q^{5} - 2q^{7} + 4q^{11} - q^{13} - 8q^{17} + 6q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 