Label 93600ep
Number of curves $1$
Conductor $93600$
CM no
Rank $2$

Related objects


Learn more

Show commands for: SageMath
sage: E = EllipticCurve("ep1")
sage: E.isogeny_class()

Elliptic curves in class 93600ep

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
93600.l1 93600ep1 \([0, 0, 0, 2805, -461810]\) \(261568120/10024911\) \(-93544449523200\) \([]\) \(207360\) \(1.3607\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 93600ep1 has rank \(2\).

Complex multiplication

The elliptic curves in class 93600ep do not have complex multiplication.

Modular form 93600.2.a.ep

sage: E.q_eigenform(10)
\(q - 4q^{7} + q^{13} - 3q^{19} + O(q^{20})\)  Toggle raw display