Show commands:
SageMath

sage: E = EllipticCurve("be1")

sage: E.isogeny_class()

## Elliptic curves in class 93600be

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|

93600.p1 | 93600be1 | \([0, 0, 0, -7500, 109600000]\) | \(-1600/177957\) | \(-5189226120000000000\) | \([]\) | \(1843200\) | \(2.2700\) | \(\Gamma_0(N)\)-optimal |

## Rank

sage: E.rank()

The elliptic curve 93600be1 has rank \(0\).

## Complex multiplication

The elliptic curves in class 93600be do not have complex multiplication.## Modular form 93600.2.a.be

sage: E.q_eigenform(10)