# Properties

 Label 93600.y1 Conductor $93600$ Discriminant $-3.459\times 10^{17}$ j-invariant $$-\frac{3137785344}{2197}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -1647000, -814050000])

gp: E = ellinit([0, 0, 0, -1647000, -814050000])

magma: E := EllipticCurve([0, 0, 0, -1647000, -814050000]);

$$y^2=x^3-1647000x-814050000$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$93600$$ = $2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-345948408000000000$ = $-1 \cdot 2^{12} \cdot 3^{9} \cdot 5^{9} \cdot 13^{3}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{3137785344}{2197}$$ = $-1 \cdot 2^{9} \cdot 3^{3} \cdot 13^{-3} \cdot 61^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.3018700426685012293475921556\dots$ Stable Faltings height: $-0.42231478871810162956664339347\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.066631244119333992579662997748\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $8$  = $2\cdot2\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $4$ = $2^2$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.1321998118186877625492159279382598337$

## Modular invariants

Modular form 93600.2.a.y

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 3q^{7} + 3q^{11} - q^{13} + 5q^{17} + 6q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1382400 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive 1 5 12 0
$3$ $2$ $III^{*}$ Additive 1 2 9 0
$5$ $2$ $III^{*}$ Additive -1 2 9 0
$13$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3Nn 3.3.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add add ordinary ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss ss - - - 0 0 0 0 0 0 0 0 0 0 0,0 0,0 - - - 0 0 0 0 0 0 0 0 0 0 0,0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 93600.y consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.780.1 $$\Z/2\Z$$ Not in database $6$ 6.0.118638000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.2239488000000.1 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $16$ Deg 16 $$\Z/3\Z \times \Z/3\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.