Properties

Label 93600.g
Number of curves $2$
Conductor $93600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 93600.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
93600.g1 93600cx2 \([0, 0, 0, -3675, -83250]\) \(25412184/845\) \(182520000000\) \([2]\) \(98304\) \(0.93375\)  
93600.g2 93600cx1 \([0, 0, 0, 75, -4500]\) \(1728/325\) \(-8775000000\) \([2]\) \(49152\) \(0.58718\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 93600.g have rank \(1\).

Complex multiplication

The elliptic curves in class 93600.g do not have complex multiplication.

Modular form 93600.2.a.g

sage: E.q_eigenform(10)
 
\(q - 4q^{7} - 4q^{11} + q^{13} - 2q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.