Properties

Label 936.h
Number of curves $4$
Conductor $936$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 936.h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 936.h do not have complex multiplication.

Modular form 936.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{7} + q^{13} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 936.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
936.h1 936i3 \([0, 0, 0, -2739, 53822]\) \(3044193988/85293\) \(63670883328\) \([2]\) \(1024\) \(0.85214\)  
936.h2 936i2 \([0, 0, 0, -399, -1870]\) \(37642192/13689\) \(2554695936\) \([2, 2]\) \(512\) \(0.50557\)  
936.h3 936i1 \([0, 0, 0, -354, -2563]\) \(420616192/117\) \(1364688\) \([2]\) \(256\) \(0.15899\) \(\Gamma_0(N)\)-optimal
936.h4 936i4 \([0, 0, 0, 1221, -13210]\) \(269676572/257049\) \(-191886050304\) \([2]\) \(1024\) \(0.85214\)