Properties

Label 930j
Number of curves $2$
Conductor $930$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("930.j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 930j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
930.j2 930j1 [1, 0, 1, -13648, 613406] [2] 2080 \(\Gamma_0(N)\)-optimal
930.j1 930j2 [1, 0, 1, -218448, 39279646] [2] 4160  

Rank

sage: E.rank()
 

The elliptic curves in class 930j have rank \(0\).

Modular form 930.2.a.j

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 4q^{7} - q^{8} + q^{9} - q^{10} + 2q^{11} + q^{12} + 2q^{13} - 4q^{14} + q^{15} + q^{16} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.