# Properties

 Label 930i Number of curves $2$ Conductor $930$ CM no Rank $0$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("i1")

sage: E.isogeny_class()

## Elliptic curves in class 930i

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
930.i2 930i1 $$[1, 0, 1, 2, -22]$$ $$1685159/209250$$ $$-209250$$ $$$$ $$120$$ $$-0.29970$$ $$\Gamma_0(N)$$-optimal
930.i1 930i2 $$[1, 0, 1, -523, -4642]$$ $$-15777367606441/3574920$$ $$-3574920$$ $$[]$$ $$360$$ $$0.24960$$

## Rank

sage: E.rank()

The elliptic curves in class 930i have rank $$0$$.

## Complex multiplication

The elliptic curves in class 930i do not have complex multiplication.

## Modular form930.2.a.i

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - 3q^{11} + q^{12} + 2q^{13} + q^{14} + q^{15} + q^{16} - q^{18} + 5q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 