# Properties

 Label 930f1 Conductor $930$ Discriminant $-5.318\times 10^{21}$ j-invariant $$-\frac{124427822010671478697670089}{5317924709672681472000}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -10400749, 13377941672]) # or

sage: E = EllipticCurve("930f1")

gp: E = ellinit([1, 0, 1, -10400749, 13377941672]) \\ or

gp: E = ellinit("930f1")

magma: E := EllipticCurve([1, 0, 1, -10400749, 13377941672]); // or

magma: E := EllipticCurve("930f1");

$$y^2 + x y + y = x^{3} - 10400749 x + 13377941672$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$930$$ = $$2 \cdot 3 \cdot 5 \cdot 31$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-5317924709672681472000$$ = $$-1 \cdot 2^{23} \cdot 3^{11} \cdot 5^{3} \cdot 31^{5}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{124427822010671478697670089}{5317924709672681472000}$$ = $$-1 \cdot 2^{-23} \cdot 3^{-11} \cdot 5^{-3} \cdot 31^{-5} \cdot 271^{3} \cdot 1842199^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.134684835595$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$11$$  = $$1\cdot11\cdot1\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + 5q^{11} + q^{12} + 2q^{13} - q^{14} - q^{15} + q^{16} - 4q^{17} - q^{18} + q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 91080 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.48153319154$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{23}$$ Non-split multiplicative 1 1 23 23
$$3$$ $$11$$ $$I_{11}$$ Split multiplicative -1 1 11 11
$$5$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3
$$31$$ $$1$$ $$I_{5}$$ Non-split multiplicative 1 1 5 5

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit split nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary nonsplit ordinary ordinary ordinary ordinary 2 3 0 2 12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 930f consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.3720.1 $$\Z/2\Z$$ Not in database
$6$ 6.0.51478848000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.