# Properties

 Label 930.l Number of curves $2$ Conductor $930$ CM no Rank $1$ Graph # Related objects

Show commands: SageMath
E = EllipticCurve("l1")

E.isogeny_class()

## Elliptic curves in class 930.l

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
930.l1 930m2 $$[1, 1, 1, -161, 119]$$ $$461710681489/252204840$$ $$252204840$$ $$$$ $$384$$ $$0.30293$$
930.l2 930m1 $$[1, 1, 1, 39, 39]$$ $$6549699311/4017600$$ $$-4017600$$ $$$$ $$192$$ $$-0.043649$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 930.l have rank $$1$$.

## Complex multiplication

The elliptic curves in class 930.l do not have complex multiplication.

## Modular form930.2.a.l

sage: E.q_eigenform(10)

$$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 6 q^{11} - q^{12} - 2 q^{13} + q^{15} + q^{16} - 4 q^{17} + q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 