Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 930.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
930.l1 | 930m2 | \([1, 1, 1, -161, 119]\) | \(461710681489/252204840\) | \(252204840\) | \([2]\) | \(384\) | \(0.30293\) | |
930.l2 | 930m1 | \([1, 1, 1, 39, 39]\) | \(6549699311/4017600\) | \(-4017600\) | \([2]\) | \(192\) | \(-0.043649\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 930.l have rank \(1\).
Complex multiplication
The elliptic curves in class 930.l do not have complex multiplication.Modular form 930.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.