Properties

Label 930.k
Number of curves $2$
Conductor $930$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 930.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
930.k1 930k2 \([1, 1, 1, -661, -6817]\) \(31942518433489/27900\) \(27900\) \([2]\) \(320\) \(0.15343\)  
930.k2 930k1 \([1, 1, 1, -41, -121]\) \(-7633736209/230640\) \(-230640\) \([2]\) \(160\) \(-0.19315\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 930.k have rank \(0\).

Complex multiplication

The elliptic curves in class 930.k do not have complex multiplication.

Modular form 930.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} - 2q^{7} + q^{8} + q^{9} - q^{10} - q^{12} + 4q^{13} - 2q^{14} + q^{15} + q^{16} + 6q^{17} + q^{18} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.