# Properties

 Label 930.h Number of curves $2$ Conductor $930$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("930.h1")

sage: E.isogeny_class()

## Elliptic curves in class 930.h

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
930.h1 930h2 [1, 0, 1, -2013, -12344]  1920
930.h2 930h1 [1, 0, 1, 467, -1432]  960 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 930.h have rank $$1$$.

## Modular form930.2.a.h

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 2q^{7} - q^{8} + q^{9} - q^{10} - 4q^{11} + q^{12} - 4q^{13} + 2q^{14} + q^{15} + q^{16} + 2q^{17} - q^{18} - 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 