Properties

Label 930.b
Number of curves $4$
Conductor $930$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("930.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 930.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
930.b1 930a3 [1, 1, 0, -6628, 204952] [2] 1152  
930.b2 930a2 [1, 1, 0, -428, 2832] [2, 2] 576  
930.b3 930a1 [1, 1, 0, -108, -432] [2] 288 \(\Gamma_0(N)\)-optimal
930.b4 930a4 [1, 1, 0, 652, 16008] [2] 1152  

Rank

sage: E.rank()
 

The elliptic curves in class 930.b have rank \(1\).

Modular form 930.2.a.b

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} - 4q^{11} - q^{12} + 6q^{13} + q^{15} + q^{16} + 2q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.