Properties

Label 9280.q
Number of curves $2$
Conductor $9280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 9280.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9280.q1 9280q1 \([0, 0, 0, -4492, 113424]\) \(38238692409/928000\) \(243269632000\) \([2]\) \(9216\) \(0.96909\) \(\Gamma_0(N)\)-optimal
9280.q2 9280q2 \([0, 0, 0, 628, 357136]\) \(104487111/210250000\) \(-55115776000000\) \([2]\) \(18432\) \(1.3157\)  

Rank

sage: E.rank()
 

The elliptic curves in class 9280.q have rank \(0\).

Complex multiplication

The elliptic curves in class 9280.q do not have complex multiplication.

Modular form 9280.2.a.q

sage: E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{7} - 3 q^{9} + 2 q^{11} + 6 q^{13} + 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.