# Properties

 Label 92697.c Number of curves 4 Conductor 92697 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("92697.c1")
sage: E.isogeny_class()

## Elliptic curves in class 92697.c

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
92697.c1 92697e4 [1, 0, 0, -411577, 101496542] 2 898560
92697.c2 92697e2 [1, 0, 0, -32362, 701195] 4 449280
92697.c3 92697e1 [1, 0, 0, -18317, -947688] 2 224640 $$\Gamma_0(N)$$-optimal
92697.c4 92697e3 [1, 0, 0, 122133, 5490540] 2 898560

## Rank

sage: E.rank()

The elliptic curves in class 92697.c have rank $$1$$.

## Modular form 92697.2.a.c

sage: E.q_eigenform(10)
$$q - q^{2} + q^{3} - q^{4} + 2q^{5} - q^{6} + 4q^{7} + 3q^{8} + q^{9} - 2q^{10} + q^{11} - q^{12} - 2q^{13} - 4q^{14} + 2q^{15} - q^{16} - 2q^{17} - q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 