Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
925.a1 |
925c1 |
925.a |
925c |
$2$ |
$2$ |
\( 5^{2} \cdot 37 \) |
\( 5^{7} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1480$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$144$ |
$0.007648$ |
$4826809/185$ |
$0.89280$ |
$3.66722$ |
$[1, 1, 1, -88, -344]$ |
\(y^2+xy+y=x^3+x^2-88x-344\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.2, 296.12.0.?, 370.6.0.?, $\ldots$ |
$[ ]$ |
925.a2 |
925c2 |
925.a |
925c |
$2$ |
$2$ |
\( 5^{2} \cdot 37 \) |
\( - 5^{8} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1480$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$0.354222$ |
$357911/34225$ |
$0.88506$ |
$4.03321$ |
$[1, 1, 1, 37, -1094]$ |
\(y^2+xy+y=x^3+x^2+37x-1094\) |
2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 296.12.0.?, 740.12.0.?, $\ldots$ |
$[ ]$ |
925.b1 |
925b3 |
925.b |
925b |
$3$ |
$9$ |
\( 5^{2} \cdot 37 \) |
\( 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$2.846851736$ |
$1$ |
|
$0$ |
$864$ |
$1.026800$ |
$727057727488000/37$ |
$1.08598$ |
$6.42430$ |
$[0, -1, 1, -46833, -3885432]$ |
\(y^2+y=x^3-x^2-46833x-3885432\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
$[(-15078/11, -653/11)]$ |
925.b2 |
925b2 |
925.b |
925b |
$3$ |
$9$ |
\( 5^{2} \cdot 37 \) |
\( 5^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$9990$ |
$1296$ |
$43$ |
$0.948950578$ |
$1$ |
|
$4$ |
$288$ |
$0.477494$ |
$1404928000/50653$ |
$0.97274$ |
$4.49792$ |
$[0, -1, 1, -583, -5057]$ |
\(y^2+y=x^3-x^2-583x-5057\) |
3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 45.72.0-9.b.1.1, 74.2.0.?, $\ldots$ |
$[(-13, 12)]$ |
925.b3 |
925b1 |
925.b |
925b |
$3$ |
$9$ |
\( 5^{2} \cdot 37 \) |
\( 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$0.316316859$ |
$1$ |
|
$6$ |
$96$ |
$-0.071812$ |
$4096000/37$ |
$0.88268$ |
$3.64318$ |
$[0, -1, 1, -83, 318]$ |
\(y^2+y=x^3-x^2-83x+318\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
$[(2, 12)]$ |
925.c1 |
925a1 |
925.c |
925a |
$1$ |
$1$ |
\( 5^{2} \cdot 37 \) |
\( 5^{8} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$0.549306902$ |
$1$ |
|
$4$ |
$192$ |
$0.129335$ |
$16777216/925$ |
$0.94517$ |
$3.84963$ |
$[0, 1, 1, -133, 519]$ |
\(y^2+y=x^3+x^2-133x+519\) |
74.2.0.? |
$[(3, 12)]$ |
925.d1 |
925d1 |
925.d |
925d |
$1$ |
$1$ |
\( 5^{2} \cdot 37 \) |
\( 5^{10} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.708246$ |
$422550360064/23125$ |
$0.92409$ |
$5.33343$ |
$[0, -1, 1, -3908, 95343]$ |
\(y^2+y=x^3-x^2-3908x+95343\) |
74.2.0.? |
$[ ]$ |
925.e1 |
925e1 |
925.e |
925e |
$1$ |
$1$ |
\( 5^{2} \cdot 37 \) |
\( 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$256$ |
$-0.191823$ |
$110592/37$ |
$0.76978$ |
$3.11433$ |
$[0, 0, 1, -25, 31]$ |
\(y^2+y=x^3-25x+31\) |
74.2.0.? |
$[ ]$ |