# Properties

 Label 92400.q3 Conductor $92400$ Discriminant $1.033\times 10^{16}$ j-invariant $$\frac{2177286259681}{161417025}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -108008, -12721488]) # or

sage: E = EllipticCurve("92400dk2")

gp: E = ellinit([0, -1, 0, -108008, -12721488]) \\ or

gp: E = ellinit("92400dk2")

magma: E := EllipticCurve([0, -1, 0, -108008, -12721488]); // or

magma: E := EllipticCurve("92400dk2");

$$y^2 = x^{3} - x^{2} - 108008 x - 12721488$$

## Mordell-Weil group structure

$$\Z/{2}\Z \times \Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-148, 0\right)$$, $$\left(377, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-228, 0\right)$$, $$\left(-148, 0\right)$$, $$\left(377, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$92400$$ = $$2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$10330689600000000$$ = $$2^{12} \cdot 3^{2} \cdot 5^{8} \cdot 7^{2} \cdot 11^{4}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2177286259681}{161417025}$$ = $$3^{-2} \cdot 5^{-2} \cdot 7^{-2} \cdot 11^{-4} \cdot 13^{3} \cdot 997^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.264584692079$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$128$$  = $$2^{2}\cdot2\cdot2^{2}\cdot2\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 92400.2.a.q

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} - q^{7} + q^{9} - q^{11} + 2q^{13} + 6q^{17} + 4q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 786432 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$2.11667753664$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_4^{*}$$ Additive -1 4 12 0
$$3$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$5$$ $$4$$ $$I_2^{*}$$ Additive 1 2 8 2
$$7$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$11$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X25.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 add nonsplit add nonsplit nonsplit - 0 - 0 0 - 0 - 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 92400.q consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{-5})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{5}, \sqrt{21})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{5}, \sqrt{-21})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.